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A new intelligent algorithm of geographical cellular automata (CA) based on ant colony optimization 
(ACO) is proposed in this paper. CA is capable of simulating the evolution of complex geographical 
phenomena, and the core of CA models is how to define transition rules. However, most of the transi-
tion rules are defined by mathematical equations, and are hence not explicit. When the study area is 
complicated, it is much more difficult to extract parameters for geographical CA. As a result, ACO is 
applied to geographical CA to automatically and intelligently obtain transition rules in this paper. The 
transition rules extracted by ACO are defined as logical expressions rather than implicit mathematical 
equations to describe the complex relationships of the nature, and easy for people to understand. The 
ACO-CA model was applied to simulating rural-urban land conversions in Guangzhou City, China, and 
appropriate simulation results were generated. Compared with See5.0 decision tree model, ACO-CA is 
more suitable to discovering transition rules for geographical CA. 
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1  Introduction 

Cellular automata (CA) was first proposed by Ulam in 
the 1940s and soon used by Von Neumann to investigate 
the logical nature of self-reproducible systems. CA has 
strong capabilities in simulating the tempo-spatial evo-
lution of complex systems. One key feature of CA is that 
complex global spatial patterns can be generated by 
some simple and local rules, this ‘bottom-up’ approach 
coincides with complexity theories that a complex sys-
tem comes from the interactions of some simple subsys-
tems. CA can be used to simulate the unexpected be-
haviors of complex systems which cannot be represented 
by concrete equations. CA is suitable for simulation and 
prediction of complex geographical processes. At the 
end of the 1980s, Couceleis put forward the theoretical 
framework for CA’s application in geosciences in details; 
especially the experiment of urban expansion simulation 
has contributed a lot to the study of urban evolution[1―3]. 
Recently, CA has been applied to the simulation of  

population dynamics[2], wildfire propagation[4], urban 
evolution[5―10], and land-use changes[5,11], of which it 
may be the most successful example for urban simula-
tion to solve geographic problems[5,6,8]. Such researches 
show that CA is suitable for simulating and predicting 
complex geographical processes.  

The definition of transition rule is the core of the CA 
model, as transition rule expresses the logical relation-
ships among the simulated processes, and determines the 
consequence of their spatial evolution. However, the 
determination of transition rules is very tedious. Much 
more methodologies were promoted by scholars. Simple 
visual comparison was proposed by Clarke to obtain 
model parameters[8]. Possible scenarios are generated by 
                      
Received November 13 2006; accepted February 13, 2007 
doi: 10.1007/s11430-007-0083-z 
†Corresponding author (email: lixia@mail.sysu.edu.cn) 
Supported by the National Outstanding Youth Foundation of China (Grant No. 
40525002), the National 863 Project of China (2006AA12Z206), the National Natu-
ral Science Foundation of China (Grant No. 40471105), and the “985 Project” of GIS 
and Remote Sensing for Geosciences from the Ministry of Education of China (Grant 
No. 105203200400006) 

www.scichina.com  www.springerlink.com Sci China Ser D-Earth Sci | Oct. 2007 | vol. 50 | no. 10 | 1578-1588 

mailto:lixia@mail.sysu.edu.cn


 

exploring various combinations of parameter values, 
best set of which is determined with visual comparison 
between the simulations and actual ones. However, it is 
difficult to find the best option for numerous combina-
tions based on variables. Hierarchical analysis procedure 
(AHP) was then used to heuristically define parameter 
values[10]. And logistic regression model was further 
presented to calibrate CA[12]. These models have been 
extensively applied due to their simplicity and practica-
bility, but they also pose problems to deal with compli-
cated geography phenomena for linear feature. Then a 
neural-network CA model was developed to automati-
cally obtain parameter values for complex relation-
ship[13]. Because of black-box character, it is difficult for 
users to comprehend the meanings of these parameters 
and the mechanisms. Decision tree model was later pre-
sented to recover transition rules of CA[14], however, it 
proves to be easily vulnerable to local optimization. 
With the development of CA model, kernel-based learn-
ing machine was induced to obtain nonlinear transition 
rules in high-dimension feature space[15], which is also 
constrained by implicit physical implications of transi-
tion rules and a large amount of calculation.  

Additionally, when the study area becomes more 
complex, the exiting methods pose a problem to derive 
CA model structure and related parameters. Hence, it’s 
necessary to introduce intelligent methods to effectively 
retrieve transition rules. Being a kind of artificial intel-
ligence optimization, ant colony is in fact a complex 
multi-agent system, which can be used for discovering 
CA transition rules. ACO, initially proposed by Colorni 
and Dorigo[16], is a system based on agents which simu-
lated the natural behavior of ants, including mechanisms 
of cooperation and adaptation. Complex tasks, such as 
optimized route for seeking foods, can be effectively 
fulfilled by the mutual cooperation between ants. During 
the optimization processes, each ant agent can make a 
random choice according to the information of the 
routes. Though without centralized control, the whole 
system can still be optimized and the shortest route can 
be easily located. Because such ant colony system is 
strongly robust, the whole solution is not easily affected 
by one’s or several agent’ failure. As a result, ACO is a 
typical swarm intelligence-based heuristic. This is ad-
vantageous because it allows the system to use a mecha-
nism of positive feedback between agents as a search 
mechanism. Recently, ACO has now become a hot topic 
in artificial intelligence field[17,18]. However, applying  

ACO to geosciences is far less reported. Actually, the 
‘bottom-up’ approaches adopted in ACO for achieving 
complex task through cooperation among agents coin-
cides well with CA, therefore, it is appropriate for ACO 
to be used for extraction of CA transition rules.  

This paper will propose a new method to obtain CA’s 
transition rules based on the techniques of ant colony 
optimization. An Ant-Miner program will be developed 
for discovering transition rules. It will retrieve optimized 
rules through simulating the behavior of ants’ seeking 
foods using the shortest paths. Besides, this model will 
be applied to the simulation of rural-urban land conver-
sions in Guangzhou. Compared with See5.0 decision 
tree model, the results show that ACO method is more 
suitable for CA model. No such studies have been re-
ported so far.  

2  Ant colony optimization 

The artificial ant colony optimization (ACO) was based 
on the ants’ behaviors of finding the shortest path when 
seeking foods without use of the visual information[17]. 
This intriguing ability of blind ants has been extensively 
studied by ethologists. They discovered that, in order to 
exchange information about which path should be fol-
lowed, ants communicate with one another by means of 
pheromone, a kind of secretion, which is unique to ants. 
While walking, ants deposit pheromone on the ground, 
and follow, in probability, pheromone previously depos-
ited by other ants. It can be sensed by moving ants to 
direct their movement, but it evaporates with time. 
When the number of ants increases along a certain path, 
the trail and amount of the pheromones deposited will 
increase, resulting in a higher probability for other ants 
to choose this path. In this way, ants can locate the 
shortest path from ant nests to food sources through in-
direct communication among individuals. This process 
can be described as a loop of positive feedback, in which 
the probability that an ant chooses a path is proportional 
to the number of ants that have already passed by that 
path[17]. 

The above food-seeking process based on positive 
feedback information indicates that ACO is self-adaptive. 
The process of seeking food by an ant colony is illus-
trated by Figure 1. It shows that swarm intelligence can 
be embodied in ant colony optimization. If there are no 
obstacles between ant nests and food sources, the short-
est path is in a straight line (Figure 1(a)). The attraction  
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Figure 1  The path choice behaviors of ants in seeking foods. 

 
is that an ant colony can not only fulfill complex tasks 
but also adapt to environmental changes. For example, if 
there is an obstacle occurring on the route, ants can use 
swarm intelligence to find the optimal solution. At the 
beginning, ants select various paths by identical prob-
ability (Figure 1(b)). During their movement, ants will 
deposit pheromone on paths that they passed by. Since 
the path F-G-H is shorter than F-O-H, the ants selecting 
the path F-G-H will reach the food source earlier than 
those selecting the path F-O-H. The amount of phero-
mone will be deposited more on H-G-F than on H-O-F. 
This will result in more ants to select the path H-G-F 
(Figure 1(c)). With the pheromones on the longer path 
gradually disappearing due to evaporation, all ants will 
move to the shortest path under this exploration process 
(Figure 1(d)). 

3  ACO-based geographical CA 

Characterized by the positive feedback process, ant col-
ony optimization is a kind of abstraction and simulation 
of true ants’ behaviors on searching for food[17,18]. Satis-
factory results have been obtained in solving traveling 
salesman problem (TSP), distribution problem, data 
clustering, combinatorial optimization and network 
routing by using ant-colony optimization[19―21]. However, 
the studies on discovering classification rules using 
ACO are still at the initial stage. The method of 
ACO-based rule discovery was first proposed by Par-
pinelli[22]. The strategy of seeking foods by ant colony 
was applied to the extraction of optimal rules in data-
bases. This ACO method can effectively solve nonlinear 
problems because of its capability of self-learning. It is 
especially useful for analyzing complex geographical 
phenomena by updating knowledge bases according to 

environmental changes and past behaviors. In this paper, 
the ant colony-based method will be modified and ap-
plied to the rule induction for discovering transition 
rules of CA.  

Route search by an ant colony is to find the links be-
tween attribute nodes and class nodes. The attribute 
node can only be selected once and must be associated 
with a class node. As shown in Figure 2, each route cor-
responds to a classification rule, and data-mining for a 
classification rule can be regarded as searching for op-
timal route. A rule can be randomly generated at the start. 
The rule can be represented as follows:  
 IF <term1 AND term2 AND……> THEN <class> (1) 
where termi are condition items, and the logical combi-
nation of condition items can be expressed as the triple 
<attribute, operator, value>, where value is a value be-
longing to the domain of attribute. The operator element 
in the triple is a relation operator. The <class> is the pre-
diction for this case.  

It should be noted that the original continuous values 
must be converted into discrete ones for facilitating the 
route search. If the original values are V1, V2, …, Vn  

 
Figure 2  Route corresponding to classification rule derived from 
Ant-Miner. 
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for the attributes of A1, A2, …, An, these values should 
be discretized as V11, V12, …, V21, V22, …, Vnm. The fol-
lowing sections will provide the detailed procedure for 
applying ACO to discovery transition rules of CA. 

Knowledge discovery of classification rules based on 
ant colony principles can be divided into three stages. 
First starting from an empty route, node can be selected 
repeatedly and added to the route until a complete route 
is acquired, that is, a rule is constructed; then the rule 
will be pruned; finally the pheromone amount on all the 
routes shall be updated, which will definitely affect the 
rule construction for the next ant.  

3.1  Rule construction 

Rule construction imitates the food seeking behavior of 
ants. The search procedure is to select nodes repeatedly 
until an integrated route is constructed. Theoretically, 
node selection can be completely random, but this will 
result in much long time for computation.  

A heuristic function can be designed to guide ants’ 
searching by reducing computation time. This function 
is critical for the computation to reach the convergence 
more quickly. The information entropy can be used to 
define this function, in which the heuristic value for 
each attribute node is proportional to its classification 
capability[22]. In this paper, a heuristic function based on 
the statistical attribute of the data (frequency) is de-
signed, in which the heuristic value ηij of the condition 
item termij is defined as[21]  
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where ηij is denoted as the density-based heuristic value 
of the condition item termij, Tij refers to the number of 
cases fitting to the condition term termij,  is the 
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The other two parameters, the amount of pheromone 
and the probability for the attribute nodes to be selected, 
are also important to the generation of rules. When a 
route is found by an ant, the thickness of pheromone for 
all the nodes in this route will be initialized to the same 

value:  
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where τ ij is the amount of pheromone for the condition 
term termij, a is the sum of attributes (excluding the 
class attributes) in the databank, bi refers to any possible 
value of attribute i.  

The roulette mechanism is adopted to decide which 
attribute node will be selected. For each attribute row, 
the probability for its node termij to be selected is calcu-
lated according to the following formula:  
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The selected attribute nodes will be continuously 
added to the route until all attributes (including class 
attributes) are selected to form a final route (a classifica-
tion rule). The validity of this rule can be assessed by 
using the following formula[22]:  

 TruePos TrueNeg ,
TruePos FalseNeg FalsePos TrueNeg

Q
⎛ ⎞ ⎛ ⎞

= ⋅⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠
 (5) 

where TruePos (true positives) is the number of cases 
covered by the rule that have the class predicted by the 
rule; FalsePos (false positives) is the number of cases 
covered by the rule that have a class different from the 
class predicted by the rule; FalseNeg (false negatives) is 
the number of cases that are not covered by the rule but 
that have the class predicted by the rule; TrueNeg (true 
negatives) is the number of cases that are not covered by 
the rule and that do not have the class predicted by the 
rule. The larger the value of Q, the higher the quality of 
the rule. 

3.2  Rule pruning 

The next step is to prune the inducted rules for better 
classification results. Rule pruning is a commonplace 
technique in data mining[23]. The goal of rule pruning is 
to remove irrelevant terms that might have been unduly 
included in the rule. Above rule induction may create a 
large set of rules, which are difficult to interpret. Some 
rules have little contribution to the classification and 
may even bring negative impacts on the accuracy. 
Moreover, selecting route nodes repeatedly may result in 
over-fitting of training data. Therefore, rule pruning po-
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tentially increases the predictive power of the rule, 
helping to avoid its overfitting to the training data. An-
other motivation for rule pruning is that it improves the 
simplicity of the rule, since a shorter rule is usually eas-
ier to be understood by the user than a longer one[22]. 

One simple way of rule pruning is to iteratively re-
move one-term-at-a-time from the rule while this proc-
ess improves the quality of the rule. More details, in the 
first iteration one starts with the full rule. Then tried to 
remove each of the terms of the rule, and the quality of 
the resulting rule is computed by eq. (5). It should be 
noted that this step might involve replacing the class in 
the rule consequent, since the majority class in the cases 
covered by the pruned rule can be different from the 
majority class in the cases covered by the original rule. 
In the next iteration it is removed again the term whose 
removal most improves the quality of the rule, and so on. 
This process is repeated until the rule has just one term 
or until there is no term whose removal will improve the 
quality of the rule[22]. The pseudo-code for rule pruning 
is as follows: 

No_of_terms=No_of_attributes−1;   
validity_newrule=1 
WHILE (validity_newrule>validity_previousrule)  
validity_newrule=validity_previousrule; 
  FOR j=1 TO No_of_terms  
      Remove termj from the rule  
      Calculate the validity_newrulej  
          IF (validity_newrule< validity_newrulej) 

THEN  
             validity_newrule= validity_newrulej   
             Obtaining a better rule  
         END IF 
  NEXT j 
No_of_terms = No_of_terms−1  
LOOP 

3.3  Pheromone updating 

In one iteration, after the rules constructed by artificial 
ants are pruned, the amount of pheromone at all route 
nodes will be updated according to the efficiency of the 
rule for classification. The pheromone amount at route 
nodes covered by the rule will be increased, while the 
pheromone amount at route nodes not covered by the 
rule will be decreased (here the evaporation coefficient ρ 
will be introduced). The pheromone amount at each at-
tribute node will be updated according to the following 

formula: 
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where ρ is the pheromone evaporation coefficient, Qk is 
the quality of a classification rule,  is the 

pheromone amount remained on the node termij by the k 
ant. When the pheromone amount at all attribute nodes 
has been updated, the next ant will start its searching. 
When many ants locate continuously the same route in 
their search, this process is convergent. Otherwise, this 
process will be repeated until all ants complete their 
search. In this iteration process, each ant will construct 
a rule, but only the rule of the best quality can be pre-
served and be regarded as the ultimate classification 
rule. Other rules of poorer quality will be discarded. 
Iteration will be repeated until the number of remaining 
training classes is less than the predefined number of 
classes. 

( )k
ij tτΔ

3.4  Discovering transition rules of CA by using ACO  

Characterized by high self-learning capability, ant col-
ony optimization gradually updates its own knowl-
edge base corresponding to environmental changes 
and previous behaviors, and in this way, realizing 
problem solution. As a result, it can be used to effec-
tively solve non-linear problems, and is particularly 
suitable for complex geographical phenomena. Addi-
tionally, the ‘bottom-up’ approaches adopted in ACO 
coincide well with CA, which is very suitable for ex-
tracting CA transition rules. In this paper, based on 
classification rules from Ant-Miner, transition rules 
are automatically derived from training data sets, and 
simultaneously model is calibrated during the process. 
The structure of ACO-based geographical CA model 
is shown as Figure 3.  

The ACO-CA model consists of two parts: rules dis-
covery and city development simulation. Remote sens-
ing data in the past two years will be utilized to monitor 
the growth of the city, and transition rules are mainly 
discovered by using Ant-Miner, which is implemented 
through Visual Basic 6.0 programming. The pseudo- 

code for discovering transition rules of CA is as follows: 

1582 LIU XiaoPing et al. Sci China Ser D-Earth Sci | Oct. 2007 | vol. 50 | no. 10 | 1578-1588 



 

 
Figure 3  ACO-based approach for cellular automata. 

 
The original trainingSet 
Discretization of the original TrainingSet 
DiscoveredRuleList=[] /* rule list is initialized with 

an emptylist */ 
WHILE (TrainingSet > Max_uncovered_cases) 

Initialize all nodes with the same amount of 
pheromone 

calculation the ηij ijη  of the training data for all 

nodes 
i = 1 /* ant index */ 

WHILE (i<No_of_ants and m<No_rules_ 
converg)   

FOR j=1 TO No_of_attributes 
Select a node of the attribute  

NEXT j 
Obtaining Rulei 
rules pruning 
IF (Rulei is equal to Rulei-1 THEN  

m=m+1 
ELSE 

m=1 
END IF 

pheromone update 
i=i+1 

LOOP 
Select the best rule Rbest among all rules con-

structed by all the ants;  
Add rule Rbest to DiscoveredRuleList  
TrainingSet = TrainingSet-{set of cases 

covered by Rbest}  
LOOP 

Ant-Miner-derived transition rules are different from 
equation-based CA transition rules. The latter are im-
plicitly expressed with mathematical equations, while 
the former are explicitly defined. For example:  

Rule 1:  
IF   Distance to urban centers <8 km,  

Distance to trunk roads <0.5 km,  
The number of developed cells in the 
neighborhood >5,  
Land use types = farmland.  

THEN Development is allowed (confidence = 
0.98).  

Rule 2:  
IF  Distance to urban centers >50 km,  

Number of developed cells in the 
neighborhood <2, Land-use types = for-
estland. 

THEN  Development is prohibited (confidence = 
0.90).  

Simulation is implemented through secondary devel-
opment with ArcObjects plus Visual Basic 6.0. During 
the process, changes of the central cell in the neighbor-
hood are dynamically computed, and the number of ur-
banized cells was easily calculated with Focal function 
of ArcGIS. It is noted that the observation interval (ΔT) 
between remote sensing images is generally far greater 
than the iteration interval (Δt) of CA simulation. It may  
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be ideal if the observation interval (ΔT ) is equal or close 
to the iteration interval (Δt) so that transition rules mined 
can be used directly in urban simulation[14]. As a result, 
it is necessary to determine the amount of land use con-
version in the iteration interval (Δt) in CA model. Firstly, 
the number of iterations (K) of CA model during the 
period of iteration is represented as follows:  
 .K T t= Δ Δ  (9) 

Secondly, amount of land use conversion (ΔQ0) can 
be determined from remote sensing for the larger observa-
tion interval (ΔT ). As ΔT > Δt, only a portion of land use 
conversion took place in the iteration Δt. Amount of land 
use conversion between t and t+1 can be calculated as  
   (10) 0 0 / ,q Q KΔ = Δ

where Δq0 is the amount of land use conversion for the 
iteration interval Δt. 

4  Application and simulation results 
4.1  Test area and spatial data 

Guangzhou City, in the Pearl River Delta of China was 
selected as test area. TM satellite images in 1988, 1993 
and 2002 were used to provide actual urban areas, which 
were divided into observation data including TM data in 
1988, 1993 for detailed transition rules and test data of 
2002 for capturing the urban development trend. The 
probability of land development is related to a series of 
spatial distance variables, neighborhood conditions, and 
physical attributes[5,24], which are derived from remote  

sensing and GIS data, are used for the discovery rules, 
listed in Table 1. 

To obtain transition rules, stratified random sampling 
method was used to extract the portion from the training 
data, which was selected from classification data[13]. 
Eventually, the total 3500 samples were randomly se-
lected. The total amounts of urban areas from these clas-
sified satellite images can be used as the global con-
straint for urban simulation. 

4.2  Data-mining of transition rules and urban simu- 
lation 

By the principle of ACO, one classification rule corre-
sponds to each ant route, and discovering classification 
rules can be regarded as searching optimal routes by ants. 
So the spatial variables are treated as the attribute nodes 
of ant route, and the cells, whether they have been 
translated into land use of urban, are treated as class 
nodes of ant route. If a cell has been converted to urban 
development, it can be marked as 1, while a cell that has 
not been converted to urban development can be marked 
as 0. Prior to rule discovery, continuous spatial variables 
must be discretized. Each route corresponds to one clas-
sification rule, and the discovery of a classification rule 
can be regarded as searching of optimal route by ants. 
The transition rules for urban development will be 
automatically derived from GIS and RS data through 
Visual Basic 6.0 programming With the training data 
selected above, 78 rules were yielded, part of which are 
listed in Table 2. 

 
Table 1  Spatial variables required for derivation of transition rules using Ant-Miner 

Spatial distance variables Local variables 
Distance to city 

proper 
(PropD) 

Distance to town 
centres 

(TownD) 

Distance to national 
highways 

(NatD) 

Distance to 
roads 

(RoadD) 

Distance to 
railways 
(RailD) 

Distance to 
xpressways e
(ExprD) 

Number of developed cells in 
the neighborhood 

(Nsum) 

Constraint 
condition 

 

 
Table 2  Part of the transition rules derived by using Ant-Miner 

Rule 1: 
  IF   

RoadD<=23 and ExprD<=25  and  181<TownD<=206 and land use=‘cropland’  and Nsum >= 3 
Then  
  Converted to urban development (confidence =0.92)   

Rule 2: 
  IF  

NatD<=47 and RoadD<=23 and 23<ExprD<=102 and 153<RailD<=179 and TownD<255 and   
land use= ’orchard’ and  Nsum >=4  

Then 
Converted to urban development (confidence =0.86)     

Rule 3: 
     IF  

413<PropD<=450 and  115<RoadD<=138 and RailD >230 TownD>235 and Nsum <2  
Then  

Not converted to urban development (confidence =0.83) 
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In order to validate the reliability of Ant-Miner model, 
the transition rules discovered with Ant-Miner will go 
through accuracy test (Table 3). It is found that the ac-
curacy is 74.6% for land that has been converted to ur-
ban development, is 79.3% for land that has not been 
converted to urban development, and the total accuracy 
is as high as 77.2%, which has already satisfied the re-
quirement as far as the complex geographical data are 
concerned. In order to further validate the Ant-Miner 
model, a comparative study was carried out by using the 
See5.0 decision tree model. This is because the form of 
rule discovered from the See5.0 model does not show 
significant difference from that discovered from the 
Ant-Miner model, thus a meaningful comparison can be 
made between these two models. A comparison about 
the experimental results (Table 3) demonstrates that the 
total accuracy for the Ant-Miner model is nearly 5 per-
centages higher than that for See5.0 model, which indi-
cates that the Ant-Miner model is more reliable and 
more suitable for knowledge discovery based on com-
plex geographical data. 

 
Table 3  Comparison of accuracy for Ant-Miner model and See5.0 deci-
sion tree model 

Model Accuracy of devel-
oped land (%) 

Accuracy of undevel-
oped land (%) 

Total accu-
racy (%) 

Ant-Miner 74.6 79.3 77.2 
See5.0 68.7 76.1 72.3 

 
Based on the transition rules obtained from Ant- 

Miner, Simulation on spatial evolution of Guangzhou 
City during the period of 1988―1993 and 1993―2002 
was ultimately implemented with ArcObjects plus Visual 
Basic 6.0. The whole process initially started from clas-
sification of TM data in 1988, the land use in 1993 and 
2002 was then simulated by running this model with 200 
iterations and 400 iterations respectively (Figure 4).  

5  Model validation and comparison 

Validation is usually required when the CA model is 
applied to the simulation of real cities[25]. A simple 
method to assess the goodness-of-fit is to compare the 
simulated patterns with the actual ones visually for vali-
dating CA[8,26], which is a rather preliminary method to 
validate the accuracy of the model. The visual compari-
son indicates that the simulated patterns are very similar 
with the actual patterns, which are obtained by the clas-
sification of remote sensing images (Figure 4). 

Visual comparison is a rather preliminary method to 
validate the accuracy of the model. A further quantitative 
analysis is to produce a confusion matrix about the con-
cordance between the simulation results and the actual 
urban patterns. It is based on the spatial overlay of the 
simulated and the actual development patterns cell by 
cell. Table 4 lists the comparison of these two patterns in 
1993 and 2002 for the ACO-based CA model. The total 
accuracies are 83.3% and 76.8%, and the Kappa coeffi-
cients are 0.64 and 0.53 for the simulation of urban de-
velopment in 1993 and 2002, respectively. The simu-
lated results in 1993 have a better accuracy because it 
uses the case closer in time.  

Structural conformity is also important in the assess-
ment of simulation results[12]. The indicator of Moran I 
can be used as the spatial statistics for measuring the 
patterns. Moran I is a useful spatial indicator that can 
reveal the degree of spatial autocorrelation[27]. The indi-
cator is able to estimate how close the simulated land 
use pattern is to the actual urban development[12]. Table 
5 shows the structural conformity using the indicator of 
Moran I. The Moran I values are 0.627 and 0.687 for the 
simulation of land development in 1993 and 2002 re-
spectively by using ACO-CA model. They are 0.626 and 
0.684 for the actual land development in 1993 and 2002 
respectively. This indicates that there is a good confor-
mity between the simulated and actual land development 
according to the measurement using the indicator of 
Moran I. 

In order to further validation the model, transition 
rules derived from the See5.0 decision tree model are 
used to simulate the urban development in the study area, 

 
Table 4  Simulation accuracies of different model for the Guangzhou 

Model Year Total accuracy (%) Kappa coefficient

1988―1993 83.3 0.64 
ACO 

1988―2002 76.8 0.53 
1988―1993 81.5 0.60 

See5.0 
1988―2002 73.2 0.46 

1988―1993 82.2 0.59 
Null model

1988―2002 67.8 0.35 

 
Table 5  Assessment of the goodness-of-fit for the CA model using 
Moran I index 

Time 1988 1993 2002 
Actual 0.633 0.626 0.684 

Simulated (ACO) 0.633 0.627 0.687 
Simulated (See5.0) 0.633 0.621 0.680 
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Figure 4  The simulated and actual urban development in Guangzhou in 1988, 1993, and 2002. 
 

and the accuracy of simulation results based on cell by 
cell comparison is calculated and listed in Table 4, 
which shows that the total accuracies of simulation are 
81.5% and 73.2%, and the Kappa coefficients are 0.60 
and 0.46 for the simulation of urban development in 
1993 and 2002, respectively. Table 4 indicates that the 
ACO-based CA model has much better simulation per-
formance than the See5.0-based CA model. 

Recently Pontius and Malanson pointed out that a 
predictive model should be compared with a Null model 
of pure persistence (no change) for model validation[28]. 
A Null model is a kind of model that predicts nothing as 
nothing would change. The baseline is that a predictive 
model should have better performances than a null 
model[28]. For instance, urban land use changes 15% in a 
period, so a Null model of pure persistence would be  

85% correct based on the standard overall accuracy, 
while the overall accuracy of a predictive model should 
be higher than 85%. However, the overall accuracy has a 
bias because of the difference between the actual agree-
ment and chance agreement[29], which can be effectively 
explained with Kappa coefficient, especially under the 
condition of geographical system with position, number 
and integrated information. As a result, more meaningful 
results will be yielded through comparing the Kappa 
coefficient between the Null model and a predictive 
model[25], Kappa coefficient is calculated as 
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where xii are the elements on the main diagonal of the  
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Figure 5  Distribution of agreement and disagreement of the simulated patterns or urban development of Guangzhou in 1993 and 2002. 

 
error matrix, xi+ is the sum of the ith row of the error 
matrix, xi+ is the sum of ith column of the error matrix. 
The Kappa coefficient of the Null model is listed in Ta-
ble 4. In the period of 1983―1993, the total accuracy of 
ACO-CA model is only 1.1% higher than that of Null 
model, but the Kappa coefficient is 0.05 higher than that 
of Null model, demonstrating a larger difference be-
tween Kappa coefficient; In the period of 1988―2002, 
the total accuracy of ACO-CA model is 9% higher than 
that of Null model, while the Kappa coefficient is 0.18 
higher than that of Null model, demonstrating a re-
markable difference in accuracy, which indicates that the 
ACO-CA model is rather a powerful tool for simulating 
urban development.  

Figure 5 further displays the spatial distribution of 
agreement and disagreement of the simulated patterns of 
urban development in Guangzhou in 1993 and 2002. 
Correct simulation results from ACO-CA model are dis-
played with grayish blue, black and red color, while the 
incorrect are shown as other color parts, and correct 
simulation results from Null model are also displayed 
with the grayish blue, black and blue parts.  

6  Conclusions 

Simulation of complex resources and environment sys-
tem is not only theoretically significant but also shows 

high prospect in application. Complex system has posed 
some problems for models based on traditional equa-
tions, which cannot well meet with the simulation of 
resources and environment system, while the CA model 
based on ‘bottom-up’ approach proves effective on 
simulating the evolutionary processes of complex sys-
tems, and is also widely applied to geographical phe-
nomena, many significant research results have since 
been achieved. The key to CA model is how to define 
transition rules, however, most of which are defined by 
mathematical equations, and are hence not explicit, and 
it is difficult to determine the parameters involved in 
these formulae. 

In this paper the ACO-based geographical CA 
(ACO-CA) was proposed. ACO is actually a complex 
multi-agent system, composed of a great number of arti-
ficial ants with simple intelligence. Complex tasks, such 
as optimized route for seeking foods, can be effectively 
fulfilled by the mutual cooperation between ants. As this 
type of ‘bottom-up’ approach coincides well with CA, 
which is, therefore, very appropriate for discovering CA 
transition rules. In our work data mining technique de-
riving classification rules from ant colony optimization 
(Ant-Miner) was first introduced into geographical CA. 
ACO was used to construct CA transition rules, which 
are not expressed in mathematical formulae and more 
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easily comprehended by people, so can describe the 
complex relationships in a more convenient and precise 
way. With strongly robust, self-adaptive, nonlinear and 
characterized by positive feedback mechanism, ACO is 
more powerful to extract rules for complex geographical 
phenomena.  

The ACO-CA model is applied to Guangzhou City, 
remote sensing images of different years were used as 
the major observation data. Stratified random sampling 
method was used to extract the portion from the training 
data for discovering transition rules, and Ant-Miner was 
used to automatically mine CA transition rules. In this 
way the urban development of Guangzhou in the period 
of 1993―2002 was simulated. Compared with the real 
situations of Guangzhou cell by cell, the accuracy and 
the Kappa coefficient of ACO-CA model are high.  

Further comparison between ACO and See5.0 deci-
sion tree model also indicate that ACO-CA model shows 
higher accuracy in simulating urban development. This 
could be due to the fact that the pheromone in 
Ant-Miner is updated continuously and the positive 
feedback it provides can help to correct any mistakes 
resulting from the defects of heuristic function. The en-
tropy involved in decision tree method is a measure of 
partial heuristic and may easily be affected the interac-
tions among attributes. Particularly, in dealing with data 
of strong correlation among attributes, the decision tree 
method could be easily trapped in the problem of partial 
optimization of space searching. However, the phero-
mone in Ant-Miner is based on the overall performance 
of a rule, so the dynamic updating of pheromone can 
better deal with data correlation. 
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